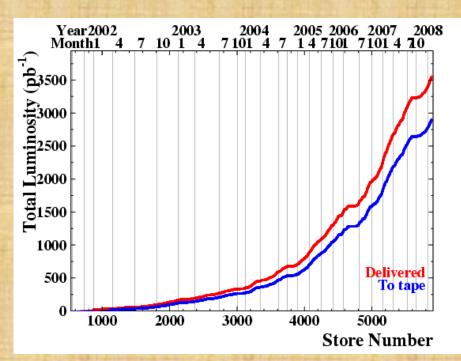
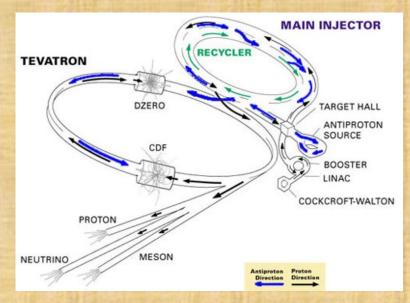
B_s Mixing and CP Violation at Tevatron

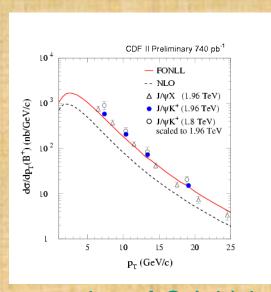
Marco Rescigno
INFN/Roma

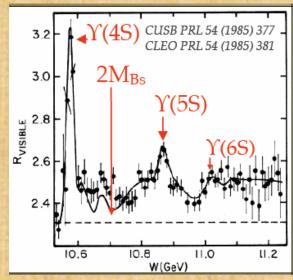

Workshop on the Origin oc P, CP, T Violation ICTP July 5th 2008


Topics

- B_s mixing
 - First measurement of sin2β_s at TeVatron
 - Other B_s mixing phase related measurement
 - Outlook
- More B_s physics
 - □ Direct CP violation
 - Semileptonic asymmetry

The Tevatron


- pp collisions at 1.96 TeV
- Excellent Performance
- Peak Initial Luminosity recent record: 3.15
 x 10³² cm⁻² s⁻¹
- Challenge for Detectors, Triggers and Reconstructions



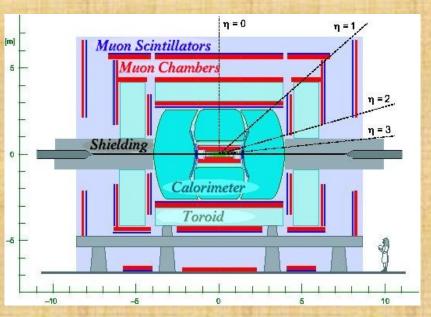
- The analyses presented in this talk span from 1.35 to 2.8 fb⁻¹
- Currently on tape > 3.5 fb⁻¹
- Plan to accumulate up 6 fb⁻¹ in 2009, 8 fb⁻¹ possible if 2010 extension approved
- x4 x5 current dataset

Tevatron vs Y(4S) vs Y(5S)

- Cross section of O (μb) in typical detector acceptance
- Pair produce (uncorrelated) all sort of b-hadrons (B_{u,d}, B_s, B_c, Λ_b...)
- Significant Lorentz Boost: $<\beta\gamma>=P_b/M_b\sim 2$
- Hadronic enivronment : σ(pp)_{tot}=60 mb
- Multi purpose detector

- Cross section of O (nb)
- Pair produce (correlated) only $B_{u,d}$, B_s only at Y(5S)
- Small and fixed Lorentz Boost: βγ= 0.425 (Belle/KEK-B)
- Extra clean enivronment and dedicated detectors

Tevatron Detectors

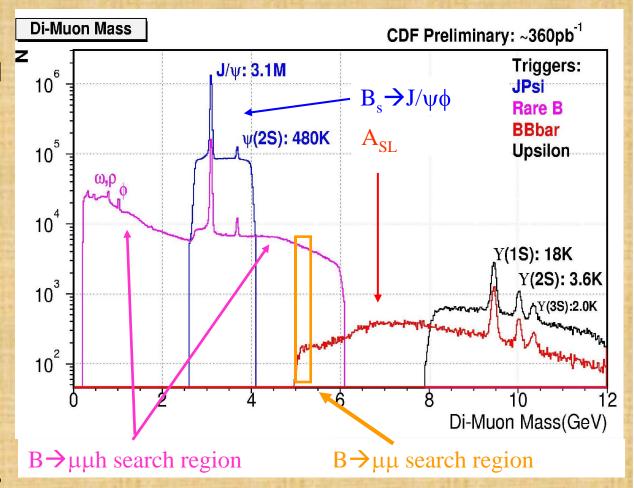


DØ Detector

- New L00 installed in 2006!
- Solenoid: 2T, weekly reversed polarity
- Excellent Calorimetry and electron ID
- Muon Coverage (Trigger) $/\eta k 2.2$

CDF II Detector

- Tracker: Silicon Vertex Detector
 - Drift Chambers
- Excellent Momentum Resolution
- Particle ID: TOF and dE/dx
- Muon Coverage (Trigger) |η|<1
- Displaced vertex trigger (SVT)

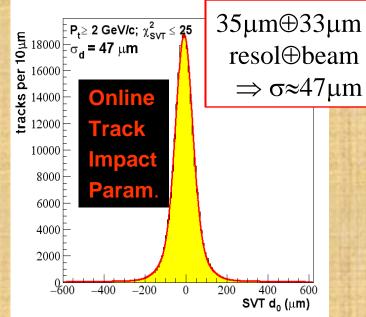

Triggering at collider

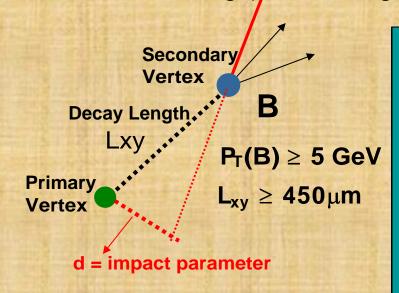
- Cannot over-enphasize
- Physics analysis at colliders start from triggering the data!
- B-physics program at CDF/Tevatron practically run off the:
 - Displaced track trigger
 - Track reconstruction at Level1
 - Silicon Vertex Tracker at Level2
 - Kinematic selection → select hadronic B-decays
 - □ Di-muon trigger
 - Two identified muon identified at L1/L2/L3
 - Select inculusive bbbar events and events with J/psi

Dimuon Triggers

CDF:

- di-muon triggered data
- Two rapidity
 ranges: CMU
 |η|<0.6, CMX 0.6
 < |η|<1




■ **DØ**:

- Similar thresholds
- Greater rapidity acceptance

Silicon Vertex Tracker

- Triggering on displaced vertex at CDF using SVT, main novelty in Run II, the hall-mark of CDF Run II physics program:
 - Discovery of B_s mixing
 - Charmless decays
 - $\supset \Sigma_{\rm B}$ discovery
- The necessary tool to get fully reconstructed decays hadronic b decays useful for mixing (and other good stuff...)

Main Trigger requires:

- 2 opposite charge tracks,
- $P_t \ge 2 \text{ GeV/c}$
- \rightarrow impact parameter $|d_0| > 120 \mu m$
- Scalar pt sum > 5.5 GeV/c
- \triangleright Projected decay length L_{xy} > 200 µm
- $\ge 2^{\circ} < \Delta \phi < 90^{\circ}$

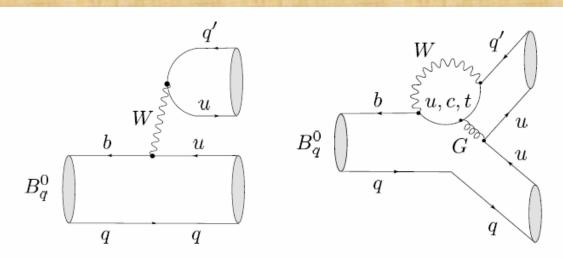
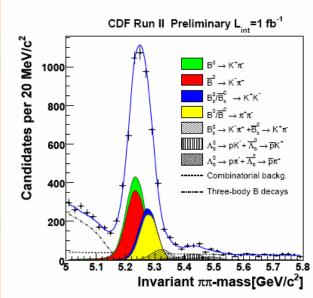
M.Rescign

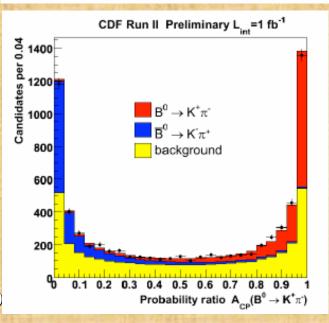
Add a dynamically prescaled LOWPT trigger with no opposite charge and no Pt sum to fill available bandwidth at low luminosity

Different Types of CP violation

- All three types of CP violation can be tested at Tevatron:
 - □ Direct CP violation in beauty (and charm!) decays
 - □ CP violation through interference of mixing and decays in B_s→J/ψ φ
 - □ CP violation in mixing (semileptonic asymmetry)
- Highlight result for the B_s sector in the following (but B_{d,u} result are as good or better than at Bfactories for several channels)

Direct CP violation in $B_{d,s} \rightarrow K\pi$


Figure 1: Tree and penguin topologies contributing to the *U*-spin-related $B_d^0 \to \pi^+\pi^-$, $B_s^0 \to K^+K^-$ and $B_d^0 \to \pi^-K^+$, $B_s^0 \to \pi^+K^-$ decays $(q, q' \in \{d, s\})$.

- Tree Penguin amplitudes may generate sizeable direct
 CP violation
- Sensitive to CKM angle γ
- Theory predictions uncertain (strong phases)
- Useful combining B_d and B_s to test/use flavour symmetries (U-spin, SU(3) etc.)

B_{d,s}→hh' Signal

- Large signal selected through the displaced track trigger
- Superposition of $B_d \rightarrow K\pi$, $B_d \rightarrow \pi\pi$, $B_s \rightarrow KK$, $B_s \rightarrow K\pi + \Lambda_b(p\pi/K)$
- Need multidimensional unbinned likelihood fit to kinematics + dE/dx information to disentangle various component
- Signal yield and resolution comparable to B-factories (with 1 fb⁻¹ of Tevatron data)
- High precision measurement:
 - □ CPV in B_d \rightarrow Kπ A_{CP}=-0.086±0.023±0.006 (4050 ev.)
- Compare to:
 - □ Babar A_{CP}=-0.107±0.018 +0.007 -0.004 (4400 ev.)
 - Arr Belle A_{CP}=-0.086±0.018±0.008 (4100 ev.)
- Systematics/detector asymmetries kept under control using also huge samples of kinematically similar D⁰→hh' decays

M.Rescigno - CPT@ICTP 7/5/0

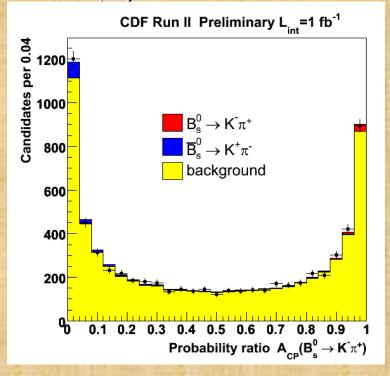
Direct CP violation in $B_{s(d)}$ decays

•With 1fb-1 first observation of $B_s \rightarrow K\pi$ mode:

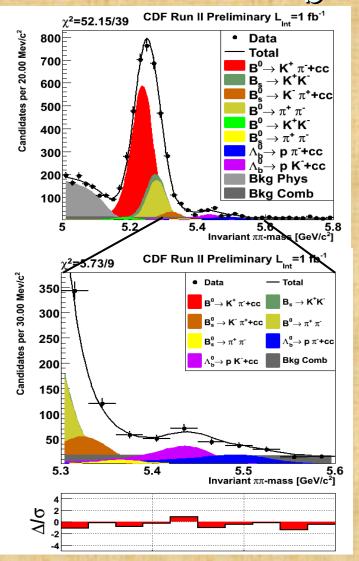
$$N(B_s^0 \to K^- p^+) = 230 \pm 34 \ (stat) \pm 16 \ (syst) \ [8s \ signif]$$

First measurement of direct CP violation:

$$A_{CP} = \frac{N(\overline{B}_s^0 \to \text{K}^+\text{p}^-) - N(B_s^0 \to K^-\text{p}^+)}{N(\overline{B}_s^0 \to \text{K}^+\text{p}^-) + N(B^0 \to K^-\text{p}^+)}$$

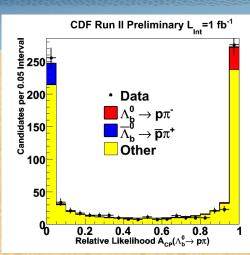

$$A_{CP}(B_s^0 \to K^- p^+) = 0.39 \pm 0.15 \text{ (stat)} \pm 0.08 \text{ (syst)}$$

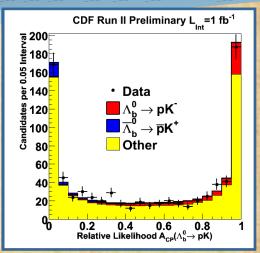
- A_{CP} is 2.5σ different from 0
- Compatible with expectation [H.J.Lipkin, Phys. Lett. B 621, 126 (2005)]


$$|A(B_s \to \pi^+ K^-)|^2 - |A(\bar{B}_s \to \pi^- K^+)|^2 = |A(\bar{B}_d \to \pi^+ K^-)|^2 - |A(B_d \to \pi^- K^+)|^2$$

$$A_{CP}(\overline{B}_s^0 \to K^+ p^-) = -A_{CP}(\overline{B}_d^0 \to K^- p^+) \cdot \frac{BR(\overline{B}_d^0 \to K^- p^+)}{BR(\overline{B}_s^0 \to K^+ p^-)} \cdot \frac{\tau_{B_s}}{\tau_{B_d}} \approx 0.37$$

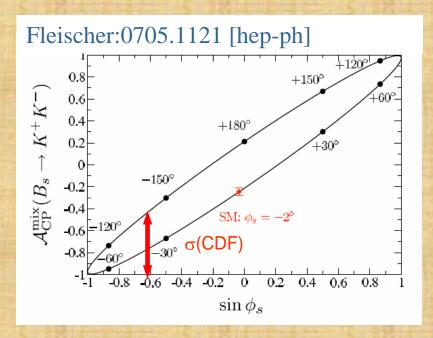
$\Lambda_b \rightarrow ph$ results



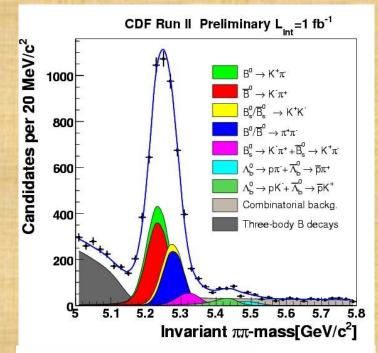

Observation of charmless Λ_b decays:

$$\begin{array}{l} \text{BR}(\Lambda_b^{\ 0}\!\to\!\text{pK}) = (5.0\pm0.7\pm1.0)\times10^{-6}\\ \text{BR}(\Lambda_b^{\ 0}\!\to\!\text{p}\pi\,) = (3.1\pm0.6\pm0.7)\times10^{-6}\\ \text{(Assuming PDG value }f_{\text{baryon}}/f_{\text{d}}\!=\!0.25\pm0.04)\\ \text{Predicted:}\\ \text{BR}(\Lambda_b^{\ 0}\!\to\!\text{pK}) = 2\times10^{-6}\\ \text{BR}(\Lambda_b^{\ 0}\!\to\!\text{p}\pi\,) = 1\times10^{-6} \end{array}$$

First hints of DCPV in barion decays (2σ)?

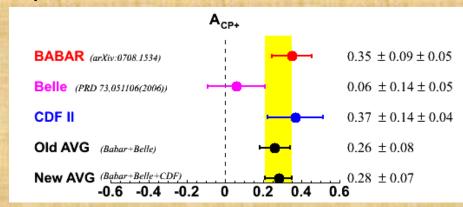

$$A_{CP}(\Lambda_b \to pp) = 0.03 \pm 0.17 \text{ (stat)} \pm 0.03$$

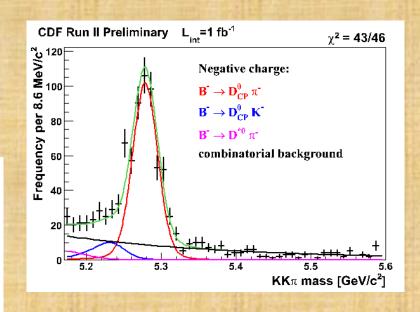
 $A_{CP}(\Lambda_b \to pK) = 0.37 \pm 0.17 \text{ (stat)} \pm 0.03 \text{ (syst)}$

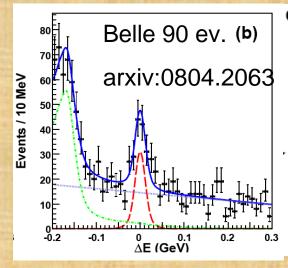


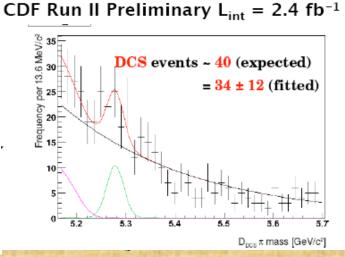
Lifetime and $A_{CP} B_s \rightarrow K^+ K^-$

- CDF has 1300 B_s→K+K⁻ events in 1fb⁻¹
- Expect 25 μm in B_s→K+Klifetime determination (measure τ_L in SM)
- May reach O(30%) ACP_{mix} at the end of Run II






M.Rescigno - CPT@ICTP


DCPV B= DK= at CDF

- Significant number of B[±]→DK[±] events (this analysis ~ 120 B→D_{CP}K events)
- Cabibbo suppressed D⁰ decays (CP+) firmly established: kinematics + PID separation, resolution as Babar/Belle

CDF contributing to "γ" via GLW method, now looking also for double Cabibbo suppressed D⁰ modes for ADS method

Flavor mixing

- Flavor eigenstate ≠ Hamiltonian eigenstate
- Simplified Schroedinger equation describing mixing and decay

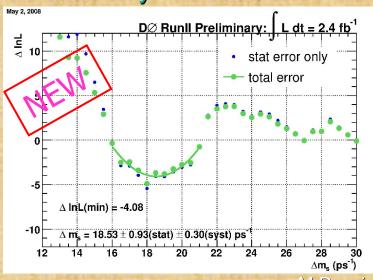
$$i\frac{d}{dt} \left(\frac{B_q^0(t)}{B_q^0(t)} \right) = (M - \frac{i}{2}\Gamma) \left(\frac{B_q^0}{B_q^0} \right) \qquad \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{pmatrix}; \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{22} \end{pmatrix}$$

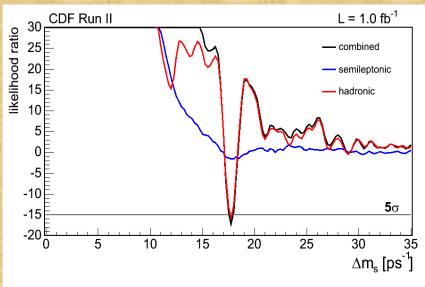
■ The mass and lifetime eigenstates (with $\Gamma_{12}/M_{12} <<1$)

$$|B_{L}\rangle = p |B_{q}^{0}\rangle + q |\overline{B}_{q}^{0}\rangle \qquad \Delta m_{q} = m_{H} - m_{L} = 2|M_{12}^{q}|$$

$$|B_{H}\rangle = p |B_{q}^{0}\rangle - q |\overline{B}_{q}^{0}\rangle \qquad \Delta \Gamma_{q} = \Gamma_{L} - \Gamma_{H} \cong -2|\Gamma_{12}^{q}|\operatorname{Re}(\frac{\Gamma_{12}^{q}}{M_{12}^{q}}) = 2|\Gamma_{12}^{q}|\cos(\varphi_{s})$$

 M_{12} and Γ_{12} are the focus of CDF & DØ experiments in the B_s system


$|M_{12}|$ and Δm_s


- Oscillation observed at CDF in 2006 with 1fb⁻¹ of data
- Δm_s known with great precision:

$$\Delta m_s = 17.77 \pm 0.10(stat) \pm 0.07 \, ps^{-1}$$

$$\frac{|V_{td}|}{|V_{ts}|} = 0.2060 \pm 0.0007 (\exp)_{-0.0060}^{+0.0081} (theor)$$

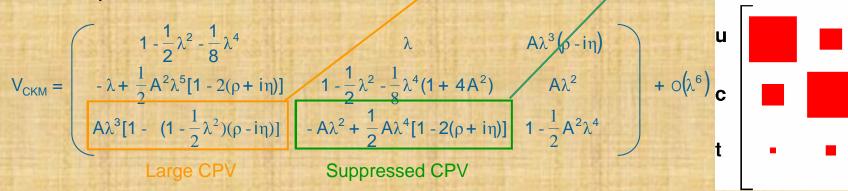
Comparision with SM prediction limited by lattice QCD uncertainty!

- 3σ significance (stat. only)
 obtained at DØ (2.4 fb⁻¹)
- DØ note 5618:

$$\Delta m_s = 18.53 \pm 0.90(stat) \pm 0.30(syst) \ ps^{-1}$$

Consistent with CDF result

What about Mixing phase?


 B_S^o

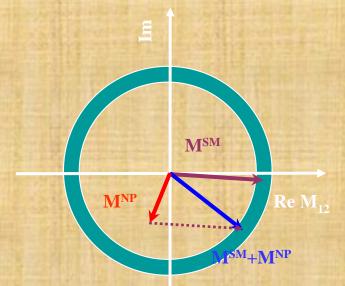
u,c,t

•In the SM phase of the mixing amplitude connected to the phase of CKM elements: $\Phi_{\rm M} \!\!=\!\! {\rm arg}({\rm VtbVts}^*)^2$

•In the Wolfenstain Parametrization (expanding in terms of $\lambda = \sin(\theta_c) \sim 0.23$ to $O(\lambda^5)$

• η responsible for CP Violation $\Rightarrow \eta \neq 0$ implies CPV

- ⇒ Standard Model does <u>not</u> predict values for CKM elements:
- ⇒ CKM hyerarchy implies small CP violation in B_s mixing

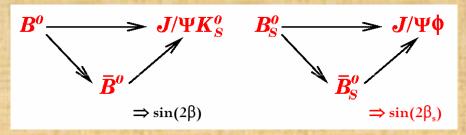

S

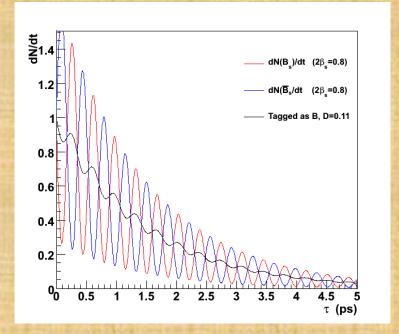
 V_{td}

New Physics in B_s mixing

- •New Physics could likely contribute to ΔB=2 transitions
- •CKM fit including ∆ms/∆md (unfortunately) very successful
- But the picture is not complete until also the phase has been constrained

- Phase of the mixing amplitude is poorly determined
- Both are needed to constrain New Physics:

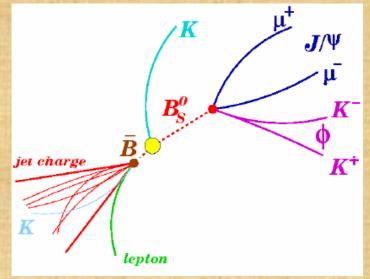

$$M_{12} = |M_{12}| e^{iFM} = |M_{12}| e^{-i2\beta S}$$


Large value of CP Violation phase $\Phi_{\rm M}$ is a clear sign of New Physics!

NB: CDF and DØ use different notations $2\beta s(CDF) = -\phi_s(DØ)$

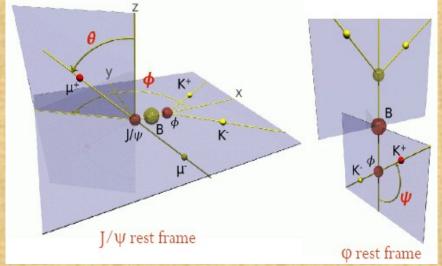
$B_s \rightarrow J/\Psi \phi$ CP Violating Decay Rate

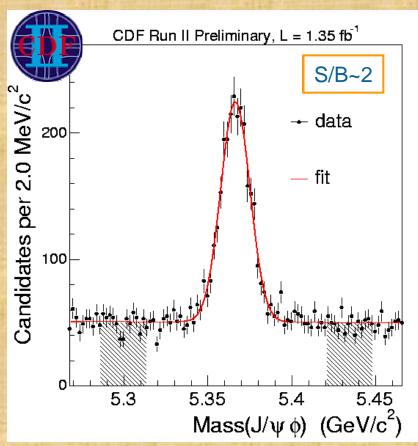
- CP violation in interference of decay with/without mixing in Bs decays to CP eigenstate final state
- Contrary to the sin2β case B_s mixes much faster → cannot show still the asymmetry grafically
- "Signal" appears as a time and CP dependent modulation of the exponential decay
 - In the SM the modulation is extremely tiny, the figure is exagerated
- Imperfect Tagging and experimental resolution on proper time makes life very hard
 - (typical dilution but no proper time smearing here)

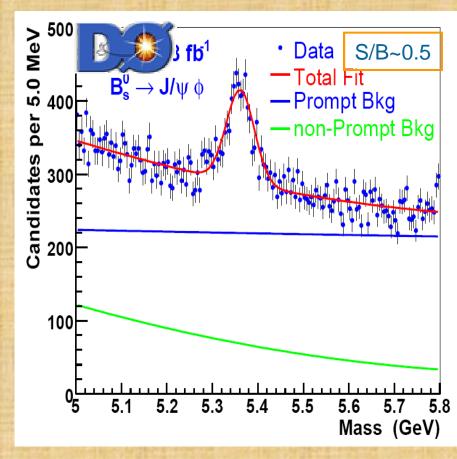


J/Ψφ is a mixture of CP eigenstate → need to be statistically separated through angular analysis

Analysis Flow


- 1 Reconstruct decays from stable products
 - $^{\circ}$ B_s \rightarrow J/ Ψ [μ ⁺ μ ⁻] Φ [K⁺K⁻]
 - $B_d \rightarrow J/\Psi[\mu^+\mu^-] K^{*0}[K^+\pi^-]$ (control sample)
- 2. Measure lifetime ct = $m_B * L_{xy}/p_T$
 - Proper time resolution essential to resolve oscillations


3. Measure decay angles in transversity base:


$$\vec{w} = (\theta_{\rm T}, F_{\rm T}, \psi)$$

- 4. Identify B_s / \overline{B}_s at production time:
 - •Flavor Tagging (Tag decision ξ)
- 5. Perform maximum likelihood fit:
 - Likelihood in m, ct, w, ξ

Signal

Signal Candidates:

- •~2000 in 1.35 fb⁻¹ (Tagged analysis) •~2000 in 2.8 fb⁻¹ (Tagged analysis)
- •~2500 in 1.7 fb⁻¹ (Untagged analysis)

Signal Candidates:

P->VV decay rate (I)

$$\begin{split} \frac{d^4P(t,\vec{w})}{dtd\vec{w}} &\propto A_0 \mid^2 T_+ f_1(\vec{w}) + \mid A_{||} \mid^2 T_+ f_2(\vec{w}) \\ &+ \mid A_{\perp} \mid^2 T_- f_3(\vec{w}) + \mid A_{||} \mid \mid A_{\perp} \mid U_+ f_4(\vec{w}) \\ &+ \mid A_0 \mid \mid A_{||} \mid \cos(\mathrm{d}_{||}) T_+ f_5(\vec{w}) \\ &+ \mid A_0 \mid \mid A_{\perp} \mid V_+ f_6(\vec{w}) \end{split}$$

CP conserving strong phases

$$\mathbf{d}_{\parallel} = \arg(A_{\parallel}^* A_0)$$

$$d_{\perp} = \arg(A_{\perp}^* A_0)$$

- Decay rate is a function of time, decay angles $\vec{w}=(\theta_T,F_T,\psi)$, initial B_s flavor and parameters $\Delta\Gamma_s$, β_s
- B_s decays into admixture of CP eigenstates (L=0,2 CP even; L=1 CP odd); 3 independent decay amplitude
- •Using transverse polarization basis: A_0 , $A_{//}$ CP even ; A_{\perp} CP odd
 - <u>interference</u> terms allow sensitivity to CP violation in untagged (or poorly tagged) sample
- f_i (i=1,...,6) encode the different angular distributions

P→VV decay rate(II)

$$\frac{d^4 P(t, \vec{w})}{dt d\vec{w}} \propto A_0 |^2 T_+ f_1(\vec{w}) + |A_{\parallel}|^2 T_+ f_2(\vec{w})$$

$$+ |A_{\perp}|^2 T_- f_3(\vec{w}) + |A_{\parallel}| |A_{\perp}| |U_+ f_4(\vec{w})$$

$$+ |A_0| |A_{\parallel}| \cos(d_{\parallel}) T_+ f_5(\vec{w})$$

$$+ |A_0| |A_{\perp}| |V_+ f_6(\vec{w})$$

CP conserving strong phases

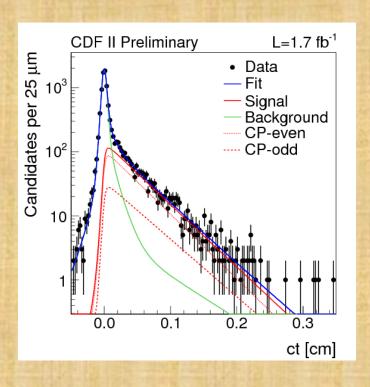
$$d_{\parallel} = \arg(A_{\parallel}^* A_0)$$
$$d_{\perp} = \arg(A_{\perp}^* A_0)$$

$$T_{\pm} = e^{-Gt} \times \left[\cosh(\Delta Gt / 2) \mp \cos(2\beta_s) \sinh(\Delta Gt / 2) \right]$$
$$\mp \eta \sin(2\beta_s) \sin(\Delta m_s t) \eta = + 1(-1) \text{ for } P(\overline{P})$$

$$U_{\pm} = \pm e^{-Gt} \times \left[\sin(d_{\perp} - d_{//}) \cos(\Delta m_s t) - \cos(d_{\perp} - d_{//}) \cos(2\beta_s) \sin(\Delta m_s t) \right]$$

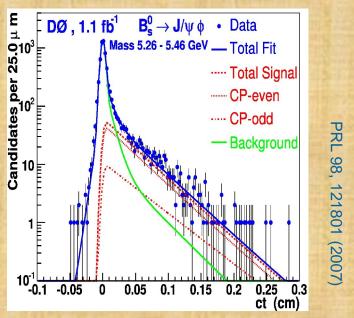
$$\pm \cos(d_{\perp} - d_{//}) \sin(2\beta_s) \sinh(\Delta \Gamma t / 2)$$

$$V_{\pm} = \pm e^{-Gt} \times \left[\sin(d_{\perp})\cos(\Delta m_s t) - \cos(d_{\perp})\cos(2\beta_s)\sin(\Delta m_s t) \right]$$


$$\pm \cos(d_{\perp})\sin(2\beta_s)\sinh(\Delta G t / 2)$$

Terms with Δm_s dependence flip sign with initial B_s flavor

Disappear summing B_s+B_s (untagged strategy)


Sensitivity to $|\sin(2\beta_s)|$ remain in CP_{even} - CP_{odd} interference terms in triple differential decay rate

B_s average lifetime (β_s =0 case)

Lifetime:
Decay Width:

World Best $\Delta\Gamma_s$, Γ_s PRL 100, 121803 (2008) $t_s = 1.52 \pm 0.04 (stat) \pm 0.02 (syst)$ ps $\Delta G_s = 0.08 \pm 0.06 (stat) \pm 0.01 (syst)$ ps⁻¹

 $t_s = 1.52 \pm 0.08(\text{stat})^{+0.01}_{-0.03}(\text{syst}) \text{ ps}$ $\Delta G_s = 0.12^{+0.08}_{-0.12}(\text{stat}) \pm 0.02(\text{syst}) \text{ ps}^{-1}$

Superseeded by recent 2.8 fb⁻¹ result:

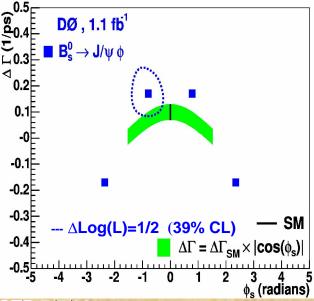
 $t_s = 1.53 \pm 0.06(stat) \pm 0.01(syst) ps$ $\Delta G_s = 0.14 \pm 0.07(stat)^{+0.01}_{-0.02}(syst) ps^{-1}$

Nicely consistent with $\tau_d(PDG) = 1.530 \pm 0.009 \text{ ps}$

Untagged J/Y ϕ result ($\beta_s \neq 0$ case)

- Symmetry in the likelihood 4-fold ambiguity
- DØ quotes a point estimate:

$$\Rightarrow F_s = -2\beta_s = -0.79 \pm 0.56 \text{ (stat)}_{-0.01}^{+0.14} \text{ (syst) rad}$$


$$\Delta G_s = 0.17 \pm 0.09 \text{ (stat)} \pm 0.02 \text{ (syst) ps}^{-1}$$

- CDF observes irregular likelihood and biases in fit
 - \Rightarrow Feldman-Cousins confidence region: SM probability p_{value}=22% (1.2 σ)

PRL 100, 121803 (2008) [arXiv:0712.2348]

O.6
Confidence region:
90%
New physics models
0.4
0.2
0.0
-0.2
-0.4
-2
2 β_s

PRL 98, 121801 (2007)

Flavor Tagging

Opposite Side Tagging

- Soft Lepton Taggers
- Jet Charge Tagger

OST's perform identically in $B_{u,d,s}$: Calibrated in high statistics B^+/B^0 data

- Combined Performance:
 - ✓ Efficiency:

 $\varepsilon = 0.96 \pm 0.01$

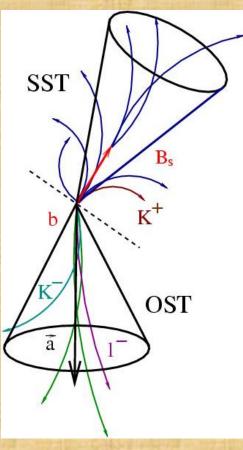
✓ Average Dilution: D= 0.11 ± 0.02

Same Side Kaon Tagging

- Most powerful tagger available:
 - ✓2-3 times more effective than combined OST

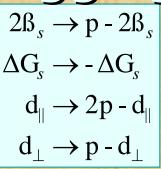
SSKT is different for B⁰, B⁺ and B_s: SST needs to rely on MC simulation

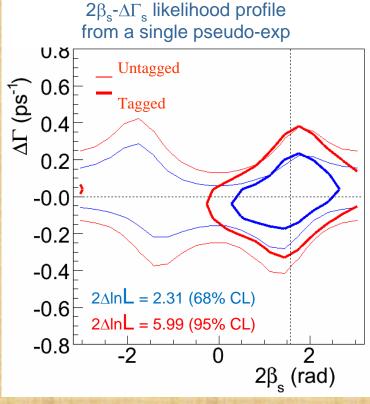
• Performance:


✓ Efficiency: ε = 0.50 ± 0.01

✓ Average Dilution: D= 0.27 ± 0.04

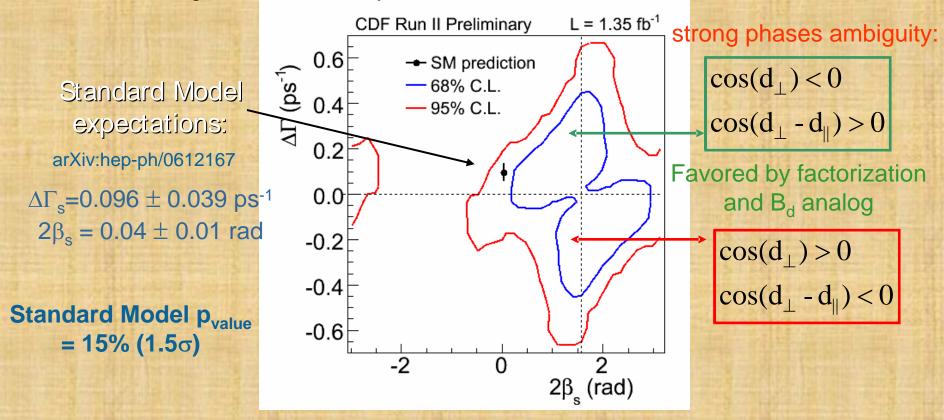
OST and SST combined independently Overall $\epsilon D^2 \sim 4\%$


DØ performance similar:


D~ 0.21 ε~1

Introducing of Flavor tagging

- •Tagging improves sensitivity to CP violation phase β_s (provided oscillation can be resolved)
- Removes two of the 4-fold ambiguity
- Still two exact mirror solution due to strong phase ambiguity remain
 - Likelihood: with tagging, gain sensitivity to both |cos(2b_s)| and sin(2b_s), rather than only |cos(2b_s)| and |sin(2b_s)| (note absolute value)
 - $\beta_s \leftrightarrow -\beta_s$ no longer a symmetry thanks to $\sin(\Delta m_s t)$ terms:
 - ⇒ 4-fold ambiguity reduced to 2-fold

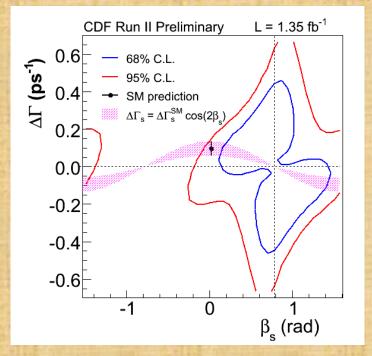


CDF result

PRL 100, 161802 (2008) arXiv:0712.2397 [hep-ex]

Perform an unbinned maximum likelihood fit to mass, ct and angles: 27 parameters total!

- •Symmetries of the problem and low statistics means the likelihood contour does <u>not</u> have the correct coverage.
- Quoted confidence region is based on a modified Feldman Cousin profile-likelihood ratio ordering with inclusion of systematic uncertainties.

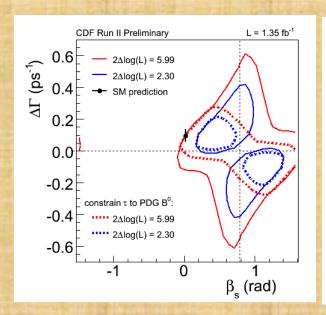


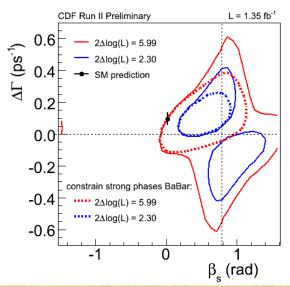
Adding information/Theory

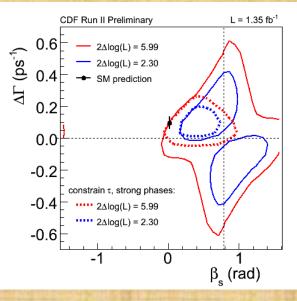
 $\Delta\Gamma_s$ is theoretically constrained:

•Input $\Delta\Gamma_s = 2|\Gamma_{12}|\cos\Phi_s \approx 2|\Gamma_{12}|\cos(2\beta_s)$:

 $[\Gamma_{12}=0.048\pm0.018$ - Nierste, Lenz, hep-ph/0612167]


 $2\beta_s$ in [0.24, 1.36] U [1.78, 2.90] at 68% C.L.




Adding information/Lifetime and strong phase constraints

Contraint $\tau_s = \tau_d \pm 1\%$

Constraint strong
 Both
 Phase to B_d→J/ψ K*

Largest effect on $\Delta\Gamma_s$, and near $\beta_s = \pi/4$, likelihood near $\beta_s = 0$ not very sensitive (too bad)

 $2\beta_s$ in [0.40, 1.20] at 68% C.L

DØ Result arXiv: 0802.2255 [hep-ex]

- •<u>DØ</u>: ~2000 B_s events with 2.8 fb⁻¹
- Assume strong phase as measured in B_d→J/ΨK* decays
- •Combined Tagging Power $\Rightarrow \varepsilon D^2 = (4.68 \pm 0.54)\%$ (NEW)

$$t_s = 1.52 \pm 0.06 \text{ (stat)} \pm 0.01 \text{ (syst)} \text{ ps}$$

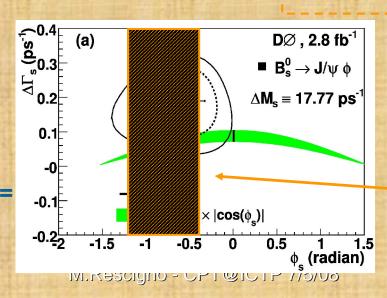
 $\Delta G_s = 0.19 \pm 0.07$ (stat) $^{+0.02}_{-0.01}$ (syst) ps⁻¹

 $F_s = -2\beta_s = -0.57^{+0.24}_{-0.30}$ (stat) $^{+0.07}_{-0.02}$ (syst) rad

FIT inputs:

 Δm_s fixed to 17.77 ps⁻¹

Gaussian constraint on Strong phases:


$$\delta_{\perp} - \delta_{\parallel} = -0.46 \pm (\pi/5)$$

 $\delta_{\perp} = +2.92 \pm (\pi/5)$

Standard Model expectations:

(arXiv:hep-ph/0612167)

 $\Phi_{\rm s} = -0.04 \pm 0.01 \text{ rad}$

Standard Model p_{value} = 6.6%

90% C.L. contours:

 $-1.20 < 2\beta_s < 0.06$ rad

 $0.06 < \Delta G_s < 0.30 \text{ ps}^{-1}$

CDF 68% CL:

Constraining lifetime, strong phases and $\Delta\Gamma_{\rm s}$

Additional ϕ_s related measurement at TeVatron and impact on New Physics

B. Semileptonic Asymmetry

• if
$$M_{12}/\Gamma_{12} >> 1$$

•if
$$M_{12}/\Gamma_{12}>>1$$
 $A_{SL}^{s} = \frac{\Delta G_{s}}{\Delta m_{s}} tan F_{s}$

 $D\varnothing$: 1.3 fb⁻¹ of data collected (B_s semileptonic decays):

$$A_{SL}^{s} = [2.45 \pm 1.93 \text{ (stat)} \pm 0.35 \text{ (syst)}] \times 10^{-2}$$

PRL 98, 151801 (2007)

• CDF: 1.6 fb⁻¹ of data collected (dimuon charge asymmetry):

$$A_{SL}^{s} = 0.020 \pm 0.021 \text{ (stat)} \pm 0.016 \text{ (syst)} \pm 0.009 \text{ (inputs)}$$

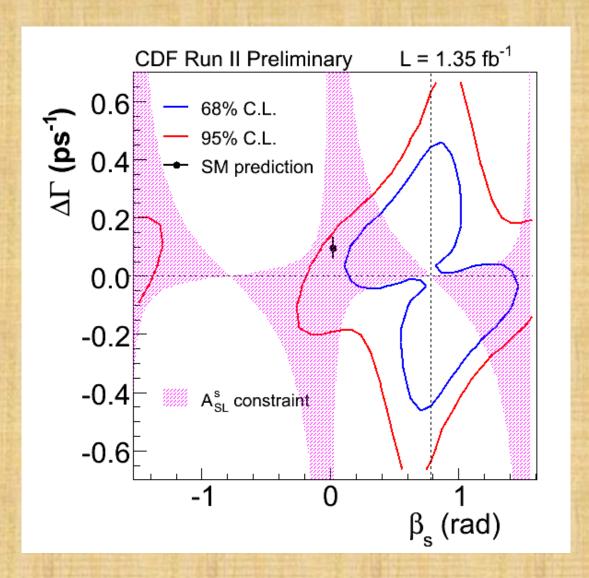
(http://www-cdf.fnal.gov/physics/new/bottom/070816.blessed-acp-bsemil/)

• DØ: 1.0 fb⁻¹ of data collected (dimuon charge asymmetry):

$$A_{SL}^{s} = -0.0064 \pm 0.0101$$
 (stat + syst)

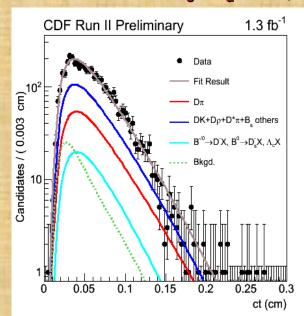
PRD 74, 092001 (2006)

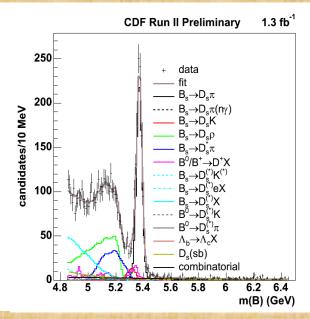
Unofficial Tevatron combination: using common/updated inputs

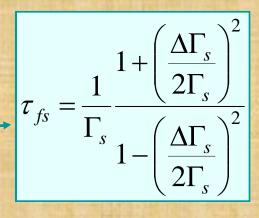

$$A_{SL}^s = -0.0054 \pm 0.0072 \ (stat + syst)$$

$$A_{SL}^{s}(SM) = O(10^{-5})$$

Quite precise, compare with

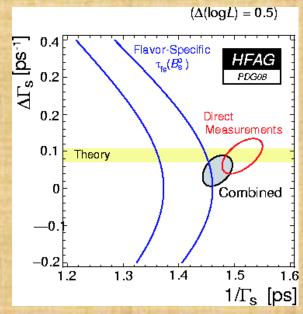

$$A_{SL}^d = -0.0005 \pm 0.0055 \ (stat + syst)$$


ASL_s constraint

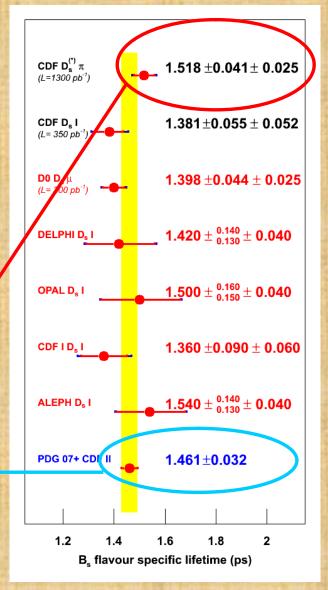


Flavor specific lifetime constraint

- Flavor specific modes: only accessible from either B_s or anti-B_s state
- Light and Heavy state contributes both 50% to the time evolution
- Fit to a single lifetime determine τ_{fs}
 - \Box Expected higher than $1/\Gamma_s$
 - \Box HQET: $\Gamma_s = \Gamma_d \pm O(1\%)$



- Recent high precision measurement from CDF using B_s→D_s^(*)π+ D_s^(*)π+ D_sρ final states using 1.3 fb-1
- $c\tau(B_s) = 455.0 \pm 12.2 \text{ (stat.)} \pm 7.4 \text{ (syst.)} \mu \text{m}$


Flavor specific lifetime constraint

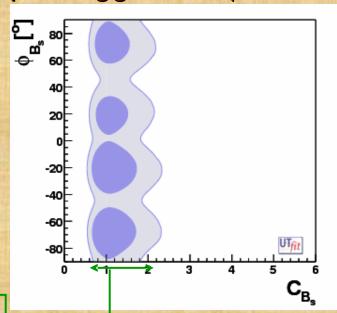
■ PDG 08 average: 1.417 ± 0.042 ps

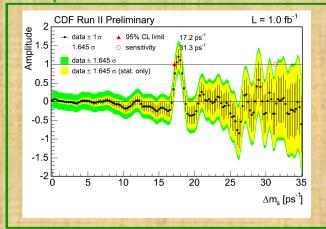
□ Slightly lower than recent τ_s from $B_s \rightarrow J/\Psi \phi$ (1.52±0.04 ps) and τ_d

- CDF hadronic more consistent
- Naïve average PDG07+CDFII
- □ Current precision on $τ_{fs}$ can be translated in a constraint on $ΔΓ_s < 0.16 ps^{-1}$ at 1 σ

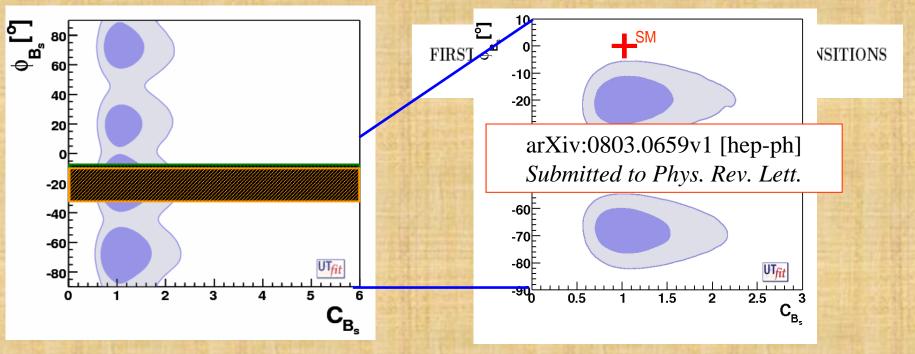
NP in Bs mixing

UT_{fit} inputs:


 Δm_s measurement (CDF)
Lifetime τ_s (CDF and DØ) $\Delta \Gamma_s$ (CDF on 200 pb⁻¹) $\Delta \Gamma_s$ and Φ_s (DØ on 1.1 fb⁻¹)
Semileptonic A_{SI} (DØ)


$\Delta m_s = C_{Bs}^* \Delta m_s^{SM}$: Lattice-QCD dominated uncertainty

$$\frac{\left\langle B_{s} \mid H_{eff}^{full} \mid \overline{B}_{s} \right\rangle}{\left\langle B_{s} \mid H_{eff}^{SM} \mid \overline{B}_{s} \right\rangle} = C_{BS} e^{2i} F_{BS}$$


 $\beta_s = \beta_s^{SM} - \Phi_{Bs}$: Experimentally dominated uncertainty

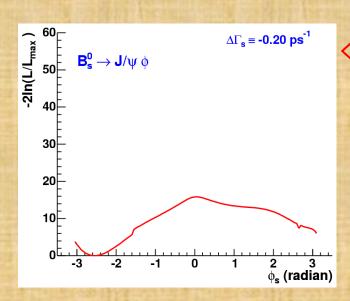
pre tagged J/Ψφ status

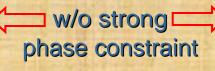
Effects of recent measurements

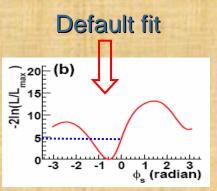
Constraint:

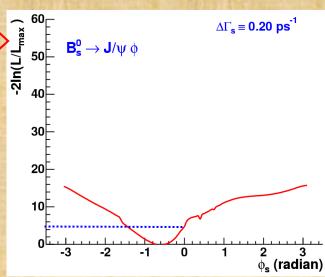
 \checkmark $\Delta\Gamma_s = 2|\Gamma_{12}|\cos\Phi_s \approx 2|\Gamma_{12}|\cos(2\beta_s)$ with (Γ_{12} =0.048±0.018):

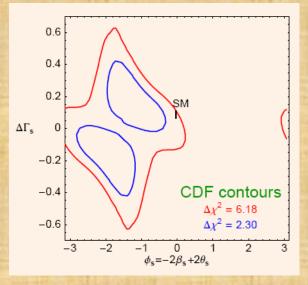
✓Strong phases from J/Ψ K^{*0} [hep-ex/0411016], B_d lifetime [PDG] and $\Delta\Gamma_s \approx 2|\Gamma_{12}|\cos(2\beta_s)$:

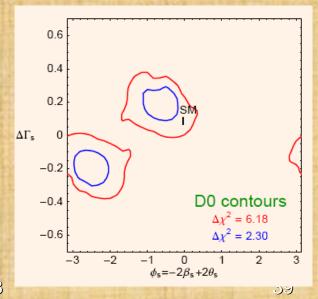

CDF: $2\beta_s \in [0.40, 1.20]$ @ 68% C.L

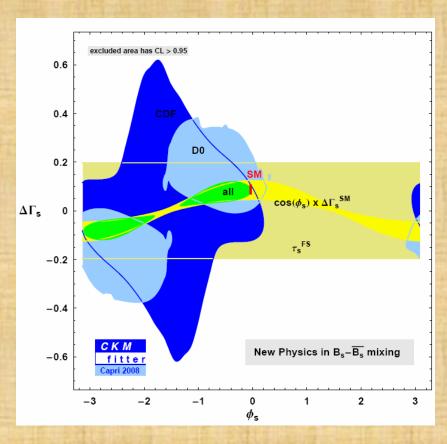

UTfit conclusions:


✓ NP phase 3σ from 0 (~-20°) with some approximation in the treatment of experimental result has been used

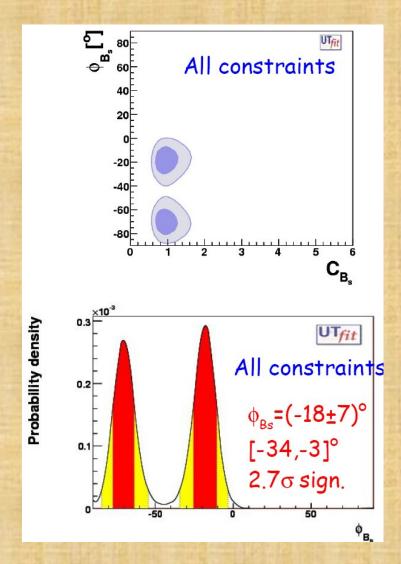

TeVatron experiments working towards a combination without approximations @ ICHEP

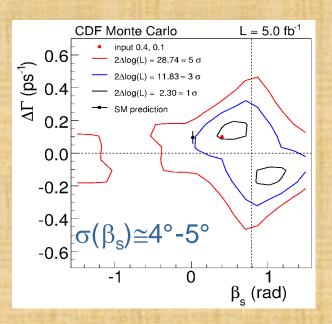

Tevatron Combination (very preliminary)

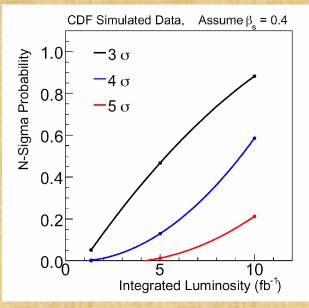




- First step towards
 a TeVatron
 combination,
 remove strong
 phase constraint in
 DØ fit!
- HFAG combination at ICHEP

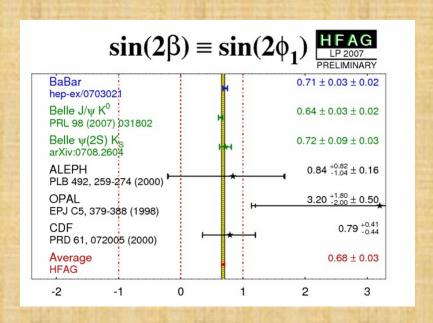

M.Rescigno - CPT@ICTP 7/5/08


From Capri to Trieste



- CKMfitter full fit 2.5 σ from SM
- UTfit full fit 2.5 σ from SM
- Bayesian magic?
 - > DØ unconstrained fit!

Tevatron Outlook



- With no analysis improvements, and no external constraints, but same signal yield and experimental resolution:
 - With 5(10) fb⁻¹each Tevatron experiment could reach a 3(5) σ significance if "fluctuation" is real
 - 10 fb⁻¹ may also be viewed as a CDF+D0 combination with 5fb⁻¹
 - □ Expect >6 fb⁻¹/experiment if TeVatron stops in 2009 and ~8 fb⁻¹/experiment if 2010 running approved
- May do better adding further signals (triggers) or better tagging (underway)

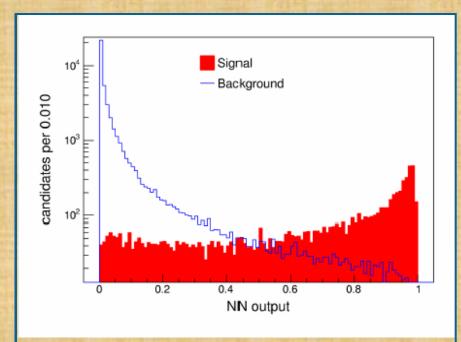
Conclusions

- B(s) physics program at TeVatron very rich and still promising:
- Study Direct CP violation in B_{d,u}, B_s and Λ_b
- First ever flavor tagged measurement of J/Ψφ rates this winter from Tevatron
 - Doserve a (not yet) significant fluctuation towards large value of sin(2β_s)
 - Make B_s physics program at the Tevatron and LHCb even more intriguing
 - □ CDF update with > 2* statistics and DØ without constraints underway → TeVatron average

Conclusions

Would be really nice to repeat 1999/2000 situation for sin2β!

Backup Slides


Trigger/Signal selection

Trivial (?) trigger:

- □ Dimuons with invariant mass cuts around J/Ψ mass:
 - P_{tμ}>1.5 GeV at low luminosity
 - Increasingly restrictive at higher luminosity
- Significant bandwidth needed at high lumi (2E32 cm⁻²s⁻¹)
 - 5 KHz (L1), 100 Hz (L2), 10Hz (3)

Offline selection:

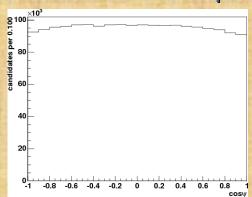
- CDF: Neural Network selection
- DØ: cut based selection

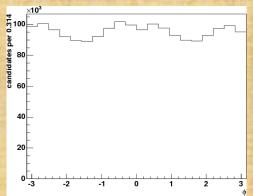
NN Variables:

B_s: p_T and vertex quality

 J/Ψ : p_T and vertex quality

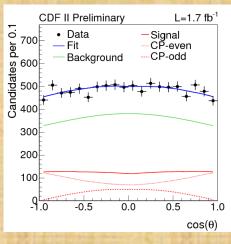
F: mass and vertex quality

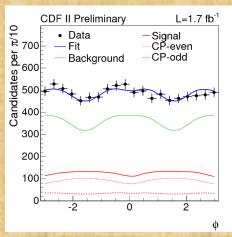

K⁺/K⁻: p_T and PID (TOF, dE/dx)

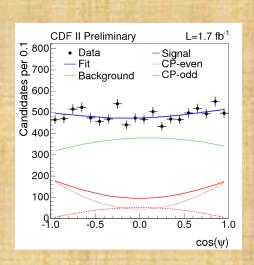

Angular acceptance

 Monte Carlo used to determine acceptance in transversity angles, two different approaches attempted: a) fitting to analytical model b) binned acceptance. Obtained equivalent results.

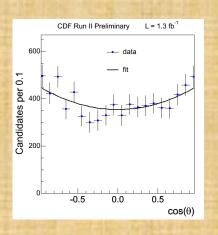
Acceptance

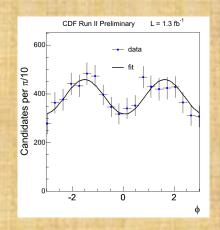

Data Fit Projections

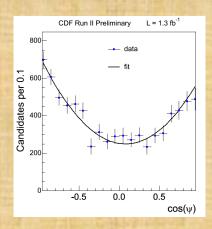




uncorrected for detector sculpting




M.Rescigno - CPT@ICTP 7/5/08



Polarization in $B_d \rightarrow J/\Psi K^{*0}$

Acceptance corrected fit projections validates treatment of detector acceptance!

Results for $B^0 \rightarrow J/\Psi \ K^0$ in good agreement with BaBar, competitive uncertainties!

CDF

www-cdf.fnal.gov/physics/new/bottom/070830.blessed-BdPsiKS

$$ct = 456 \pm 6$$
 (stat) ± 6 (syst) μm

$$|A_0(0)|^2 = 0.569 \pm 0.009 \text{ (stat)} \pm 0.009 \text{ (syst)}$$

$$|A_{\parallel}(0)|^2 = 0.211 \pm 0.012 \ (stat) \pm 0.006 \ (syst)$$

$$d_{\parallel} = -2.96 \pm 0.08 \ (stat) \pm 0.03 \ (syst)$$

$$d_1 = +2.97 \pm 0.06 \ (stat) \pm 0.01 \ (syst)$$

Babar: Phys. Rev. D 76, 031102 (2007)

$$|A_0(0)|^2 = 0.556 \pm 0.009 \text{ (stat)} \pm 0.010 \text{ (syst)}$$

$$|A_{\parallel}(0)|^2 = 0.211 \pm 0.010 \ (stat) \pm 0.006 \ (syst)$$

$$d_{\parallel} = -2.93 \pm 0.08 \ (stat) \pm 0.04 \ (syst)$$

$$d_{\perp} = +2.96 \pm 0.05 \ (stat) \pm 0.03 \ (syst)$$

Bd/Bs polarization

$$\tau = 1.52 \pm 0.04 \pm 0.02 \text{ ps},$$

$$\Delta\Gamma = 0.076^{+0.059}_{-0.063} \pm 0.006 \text{ ps}^{-1},$$

$$|A_0|^2 = 0.531 \pm 0.020 \pm 0.007,$$

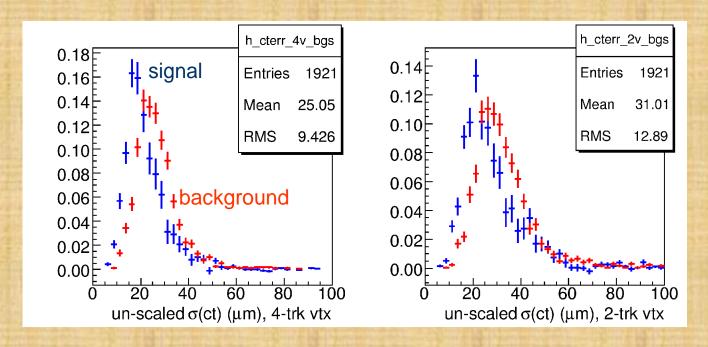
$$|A_{\perp}|^2 = 0.239 \pm 0.029 \pm 0.011,$$

$$|A_{||}|^2 = 0.230 \pm 0.026 \pm 0.009.$$

	free ϕ_s	$\phi_s \equiv \phi_s^{SM}$	$\Delta\Gamma_s^{th}$
$\overline{\tau}_s$ (ps)	1.52 ± 0.06	1.53 ± 0.06	1.49 ± 0.05
$\Delta\Gamma_s \; (\mathrm{ps}^{-1})$	0.19 ± 0.07	0.14 ± 0.07	0.083 ± 0.018
$A_{\perp}(0)$	0.41 ± 0.04	$0.44{\pm}0.04$	0.45 ± 0.03
$ A_0(0) ^2 - A_{ }(0) ^2$	0.34 ± 0.05	$0.35{\pm}0.04$	0.33 ± 0.04
δ_1	-0.52 ± 0.42	-0.48 ± 0.45	-0.47 ± 0.42
δ_2	3.17 ± 0.39	3.19 ± 0.43	3.21 ± 0.40
ϕ_s	$-0.57^{+0.24}_{-0.30}$	$\equiv -0.04$	-0.46 ± 0.28
$\Delta M_s \; (\mathrm{ps^{-1}})$	$\equiv 17.77$	$\equiv 17.77$	$\equiv 17.77$

Babar: Phys. Rev. D 76, 031102 (2007)

$$|A_0(0)|^2 = 0.556 \pm 0.009 \text{ (stat)} \pm 0.010 \text{ (syst)}$$


$$|A_{\parallel}(0)|^2 = 0.211 \pm 0.010 \ (stat) \pm 0.006 \ (syst)$$

$$d_{\parallel} = -2.93 \pm 0.08 \ (stat) \pm 0.04 \ (syst)$$

$$d_{\perp} = +2.96 \pm 0.05 \ (stat) \pm 0.03 \ (syst)$$

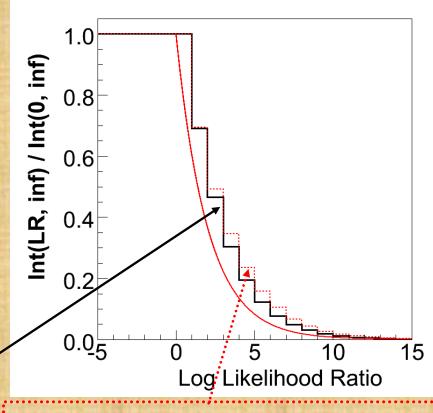
Proper time resolution

- •The mean is of the sideband subtracted σ_{ct} resolution for a 4-track vertex is 25.05 μm (error returned by the vertex fit)
- Need to multiply by a ct resolution scale factor determined by fitting the prompt peak : $s = 1.26 \pm 0.02$ (effect of non gaussian tails, charged particle multiplicity etc,,,)
- Estimate an average resolution on proper time of 106 fs (with a most probable value of 78 fs).

Confidence Region Construction

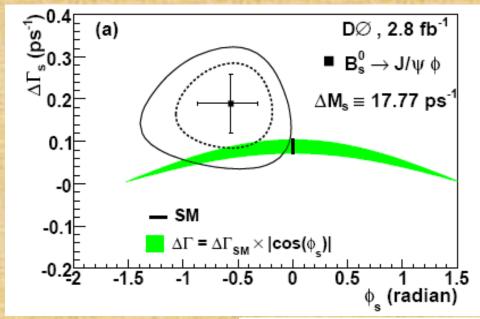
$$R(\Delta G_{s}, \beta_{s}) = \log \frac{L(\Delta \hat{G}_{s}, \hat{\beta}_{s}, \hat{\theta})}{L(\Delta G_{s}, \beta_{s}, \hat{\theta}')}$$

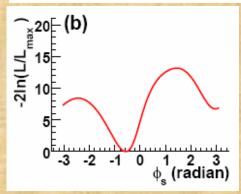
^ = parameters that maximize likelihood L

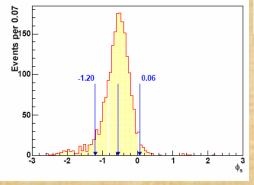

 θ = nuisance parameters which maximize L for a specific choice of $\Delta\Gamma_s, \beta_s$

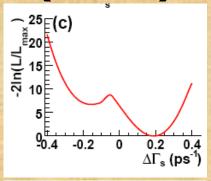
Use pseudo-experiments to calculate:

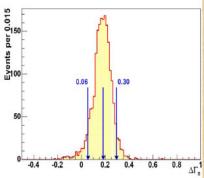
$$p_{value} = \int_{Rdata}^{\infty} f(R, \Delta G_{s}, \beta_{s}) dR$$


Guarantees the frequentistic coverage of the quoted C.L.


Takes into account non-asymptotic behaviour of likelihood, i.e. log(L) non-parabolic, and possibility of large fluctuation of likelihood shape from experiment-to-experiment




Include systematics via an additional coverage adjustment varying nuisance parameters within 5σ of their uncertainties and choosing worst case (higher P-value) to define the confidence regions


DØ Results (tails)

- 90% CL range from pseudoexperiment significantly different from what obtained from likelihood profile
 - $-1.20 < \varphi_s < 0.06 \ rad \ vs$
 - $-1.10 < \varphi_s < -0.10 \ rad$

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.